❔Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными
Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.
Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.
Такие механизмы встроены, например, в: ➡️ XGBoost (можно задать missing), ➡️ LightGBM (имеет встроенную поддержку NaN), ➡️ CatBoost (автоматически обрабатывает пропуски).
Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если: ➡️ пропусков много, ➡️ отсутствие значений связано с целевой переменной или другими признаками.
В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).
❔Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными
Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.
Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.
Такие механизмы встроены, например, в: ➡️ XGBoost (можно задать missing), ➡️ LightGBM (имеет встроенную поддержку NaN), ➡️ CatBoost (автоматически обрабатывает пропуски).
Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если: ➡️ пропусков много, ➡️ отсутствие значений связано с целевой переменной или другими признаками.
В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).
Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from us